Kaliini soal mengarahkan kita ke bentuk akar pangkat tiga. Dalam kasus ini kita misalkan. maka dan y 3 = x + 4. akibatnya x = y 3 - 4. karena x —> 4 maka y —> 2. Dengan demikian soal limit menjadi . Beberapa artikel yang berkaitan dengan limit. antara mendekati nol dan tak hingga limit aljabar limit bentuk akar limit bilangan natural
Penyelesaian: a). Karena (artinya mendekati 5 dari kanan, sehingga nilai positif. b). c). Penyelesaian Limit di Tak Hingga. Untuk menyelesaikan limit menuju tak hingga ( ), kita gunakan limit dasarnya yaitu : dengan bilangan real dan bilangan asli. Artinya kita harus mengarahkan bentuk limit di tak hingga menjadi rumus dasar di atas dengan cara :
Darigrafik diketahui bahwa nilai limit kiri dan limit kanan adalah sama untuk x mendekati 3 sehingga sesuai definisi limit fx untuk x mendekati 3 adalah tak hingga. Penyelesaian limit tak hingga bentuk akar sebenarnya menggunakan cara menyelesaikan limit dengan kali akar sekawan itu kalau cara manualnya. G tidak kontinyu pada titik x 2.
EdumatikNet - Ini adalah artikel yang akan membahas cara menyelesaikan limit tak hingga bentuk akar. Mulai dari limit tak hingga bentuk akar 2 suku sampai limit tak hingga bentuk akar 3 suku. Cara Menyelesaikan Limit Mendekati Nol - 31,999 views; Menyelesaikan Limit dengan Cara Substitusi - 28,127 views; TERBARU. Soal Pemantapan TPS
Teksvideo. Jika menemukan soal seperti ini kita harus merasionalkan bentuk akar a terlebih dahulu sehingga hasilnya akan menjadi seperti ini. Ingatlah konsep dari a kuadrat dikurang b kuadrat = A min b dikali dengan a. + b ini dapat kita gunakan untuk mempermudah perkalian sehingga limit menuju Infinite menjadi seperti ini 2 min 1 kuadratdikurang akar 4 x kuadrat min 6 x min 5 dikuadratkan
Darigrafik diketahui bahwa nilai limit kiri dan limit kanan tidak sama untuk x mendekati 2 modifikasikan hingga jika disubstitusikan tidak menjadi bentuk tak tentu, 2x jika diubah bentuk akar akan menjadi √4x2 Rumus trik cepat mengerjakan limit tak hingga yang ke 2 dapat digunakan untuk contoh soal limit tak hingga bentuk akar yang di mana
IMHlP. Kelas 11 SMALimit FungsiLimit Fungsi Aljabar di Tak HinggaLimit Fungsi Aljabar di Tak HinggaLimit FungsiKALKULUSMatematikaRekomendasi video solusi lainnya0334lim x ->tak hingga 2x+3^2-7/8x^2-1=....0319lim x->tak hingga x+2-akarx^2+x+1=...0137 Nilai lim x-> tak hingga 2x-33x+1/2x^2+x+1 adalah..0649limit x mendekati tak hingga akar4x^2+x-1-2x+1=...Teks videopada soal kali ini kita punya limit x mendekati tak hingga untuk fungsi berikut jika menemukan bentuk fungsinya seperti ini kita akan menggunakan metode kali akar Sekawan ya Oke kita punya X2 dikurangi dengan akar x kuadrat min 2 x + 6 berarti kita punya sekawannya adalah x + 2 ditambah Oke ditambah dengan akar x kuadrat min 2 x + 6 bagaimana cara mengkalikan ya Jadi kita tulis ulang dulu di sini limit x mendekati tak hingga untuk x + 2 dikurangi ya akar x kuadrat min 2 x + 6 lalu kita kalikan dengan akar sekawannya tadi yang tandanya itu dikurang jadi ditambah seperti ini oke lalu karena kita mengalir ke bagian atas pecahan kita bagi juga yang bagian bawahnya ya ini kan sebenarnya bentuknya x + 2 min akar x kuadrat min 2 x + 6 per satu ya Jadi yang bawahnya per 1 nya 23 kali kanseperti ini Jadi sebenarnya ini bentuknya kita kalikan dengan 1 ya karena jika kita kalikan dengan 1 itu tidak mengubah bentuk aslinya seperti itu Oke selanjutnya berarti kita kalikan untuk yang penyebutnya berarti kita punya kan 1 dikalikan akar Sekawan tadi oke tapi kalau yang atas kita punya misalkan Saya punya bentuk perkalian Aljabar A min b dikali a + b maka sebenarnya ini akan = a kuadrat + b kuadrat ya di sini berarti kita punya hanya itu adalah x + 2 dan b adalah akar x kuadrat min 2 x + 6 berarti kita punya limit x mendekati tak hingga di sini ya kita punya x + 2 kuadrat dikurangi dengan akar x kuadrat dikurangi 2 x + 6 dikuadratkan hasilnya adalah x kuadrat min 2 x + 6 kita bagi denganx + 2 ditambah akar dari X kuadrat min 2 x + 6 y sepertinya ini berarti kita punya akan sama dengan limit x mendekati tak hingga berarti kita punya di sini adalah x kuadrat + 4 x + 4 yang lalu langsung saja kita kalikan ini negatif x kuadrat dari kita punya dikurangi x kuadrat negatif X negatif 100 ditambah 2 x yang ini berarti kita punya negatif 6 atau dikurangi dengan 6 kita bagi yang bagian bawah itu masih belum berubah bentuknya masih seperti ini x + 2 + x kuadrat min 2 x ditambah dengan 6 kita operasikan yang bagian pembilang dari pecahan atau yang atas berarti kita punya x kuadrat nya habis karena saya kurangi disini lalu selanjutnya saya punya 4 x + 2 x itu berarti 6 x 4 dikurangi 6 berarti negatif 2Yang bawah masih belum berubah karena kita masih tidak bisa mengoperasikannya di sini ya. Sekarang kalau sudah kita di sini untuk mengerjakan limit x menuju tak hingga kita cari pangkat dari Excel tingginya tidak punya disini adalah x ^ 1 ya atau akar dari X kuadrat. Oke itu adalah pangkat tertingginya maka kita kedua ruas ya dengan 1 per pangkat tertingginya atau kita bagi kedua ruas dengan pangkat tertingginya x 1 x pangkat 1 atau 1 per x kuadrat ya Oke berarti kalau sudah di sini Saya punya ini langsung saja saya kalikan atau Saya bahagia sama saja cuman saya tulis di sini biar rapi saya kali kan ya dengan 1 per X dibagi 1 per akar x kuadrat 1 x kuadrat + 1 x itu sama ya Oke berarti kita punya di sini limitX mendekati tak hingga 6 X dikali Tan 1 per x 6 dikurangi dengan 2 per X yang berarti lalu kita bagi disini x + 2 dikalikan dengan 1 per akar x kuadrat Oke berarti kita punya X per akar x kuadrat atau X per X yang nilainya 1 + dengan 2 per akar x kuadrat 2x lalu saya punya di sini ditambah dengan nanya berarti kan kita punya x kuadrat per x kuadrat dari 1 dikurangi dengan yang ini berarti kalau masuk dalam akar kita punya x kuadrat ya 2 per x kuadrat 2 per X lalu saya punya disini selanjutnya adalah ditambah dengan 6 per x kuadrat seperti ini ya. Oke = masukkan nilai x nya itu tak hingga berarti saya punya di sini adalah selanjutnya 6 dikurangi dengan 2 per tak hingga dibagi dengan 1 + 2Hingga ditambah dengan akar ya yaitu akarnya 1 dikurangi 2 per tak hingga di tambah dengan 6 tak hingga kuadrat seperti ini. Oke ini akan sama dengan sesuatu dibagi dengan tak hingga itu hasilnya adalah 0, ya sesuatu dibagi dengan tak hingga pangkat berapa pun itu hasilnya akan nol berarti = 6 dikurangi 0 dibagi dengan 1 + 0 + √ 10 + 0 di sini ya berarti kita punya = 6 dibagi dengan 1 + 16 / 2. Berarti nilainya kita punya ini akan = 3 jadi jawabannya adalah 3 disini sesuai dengan pilihan yang D soal Oke sampai jumpa di video berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
Kelas 11 SMALimit FungsiLimit Fungsi Aljabar di Tak HinggaLimit Fungsi Aljabar di Tak HinggaLimit FungsiKALKULUSMatematikaRekomendasi video solusi lainnya0334lim x ->tak hingga 2x+3^2-7/8x^2-1=....0319lim x->tak hingga x+2-akarx^2+x+1=...0137 Nilai lim x-> tak hingga 2x-33x+1/2x^2+x+1 adalah..0649limit x mendekati tak hingga akar4x^2+x-1-2x+1=...Teks videoDi sini ketahui terdapat bentuk limit x tak hingga saat ini dan kita akan menjadi nilai limit x menuju tak hingga perhatikan bahwa apabila kita sudah dibersihkan yaitu merupakan suatu bentuk tertentu yaitu pasar yang akan kita gunakan adalah limit x menuju tak hingga jadi dia diberi nilai nol adalah 1 maka n adalah suatu bilangan positif 0. Oleh karena itu dengan membagi pembilang dan penyebutnya dengan pangkat tertinggi di antara pembilang dan penyebutnya yaitu disini pakartining Nyalakan X akan membagi pembilang dan penyebut dengan akar x hasil dari √ 13 / dengan x tinggal di sini di 1 dikurang 1 per X semuanya menjadi akar 100 + 1 per X dibagi dengan akan ditambah 3 per x + 1 per X apabila nilai yang ingin kita masukkan ke dalam di bawah ini dari 1 Pangkat 10 + akar 10 dibagi akar 4 + 0 akar 10 Sederhanakan akar 4 adalah 1 = 2 jawabannya adalah di 2 sampai jumpa di pertemuan selanjutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
Limit x mendekati tak hingga dari x sin 3/x sama dengan limit trigonometriPembahasan Misal sehingga= 3Pelajari lebih lanjut Contoh soal lain tentang limit trigonometriNilai limit x mendekati 0 dari sin 8x . tan x/ 1 – cos 4x x tan x/2 cos² x – 2 sin 2x/sin 6x - Detil Jawaban Kelas 12Mapel Matematika Peminatan Kategori Limit Trigonometri dan Limit Tak HinggaKode
AAHai Laila, kakak coba bantu jawab ya! Jadi, nilai dari limx→∞ √x+ √x+1-√x = ∞. Berikut penjelasannya. Soal ini menggunakan konsep limit tak hingga bentuk akar, kita bisa selesaikan dengan cara subtitusi biasa untuk soal ini limx→∞ √x+ √x+1-√x {√x- √x=0} = limx→∞ √x+1 substitusi nilai x = √∞+1 = √∞ = ∞ Semoga beri rating untuk berterima kasih pada penjawab soal!Yah, akses pembahasan gratismu habisDapatkan akses pembahasan sepuasnya tanpa batas dan bebas iklan!
Kelas 11 SMALimit FungsiLimit Fungsi Aljabar di Tak HinggaLimit Fungsi Aljabar di Tak HinggaLimit FungsiKALKULUSMatematikaRekomendasi video solusi lainnya0334lim x ->tak hingga 2x+3^2-7/8x^2-1=....0319lim x->tak hingga x+2-akarx^2+x+1=...0137 Nilai lim x-> tak hingga 2x-33x+1/2x^2+x+1 adalah..0649limit x mendekati tak hingga akar4x^2+x-1-2x+1=...Teks videojika kita menemukan soal seperti berikut, maka indahnya kan itu nilai dari limit tersebut sehingga sebelumnya kita mengingat kembali bila kita menemukan suatu bentuk tertentu yaitu terhingga maka limit x menuju tak hingga untuk fungsi berikut a k = l dimana elakan = Min tak hingga jika dan hanya jika a kurang dari p kemudian elakan = B Min phi per 2 akar a Jika a = p lalu l a k = tak hingga jika dan hanya Jika a lebih dari p maka pada saat tersebut ketika kita status ikan tak hingga ke persamaan berikut maka diperoleh sehingga minta hingga maka merupakan suatu bentuk tertentu jadi pada limit yaitu X menuju tak hingga untuk suatu fungsi akar dari X kuadrat + x + 5 dikurang kan dengan akar dari X kuadrat min 2 x + 3 maka kita menemukan itu nilai a akan = 1 = 1 C = 5 Kemudian untuk P itu sama dengan 1 lalu untuk Q = min 2 dan untuk R = 3 maka nilai a yaitu = P sehingga Jika a = p hasil limit y = b Min phi per 2 akar a maka kita memperoleh itu hasil limit tersebut akan = B Min Q per 2 akar a maka k = b yang kita miliki 1 dikurangkan dengan Q maka min 2 lalu dia kan dengan 2 kalikan dengan √ 1 sehingga diperoleh yaitu suatu hasil 3 per 2 jadi hasil dari nilai limit tersebut yaitu 3 per 2 atau terdapat pada option B sampai jumpa di pertanyaan berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
limit x mendekati tak hingga bentuk akar